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Variance in the Chemical Composition of Dry Beans
Determined from UV Spectral Fingerprints
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Nine varieties of dry beans representing five market classes were grown in three locations
(Maryland, Michigan, and Nebraska), and subsamples were collected for each variety (row
composites from each plot). Aqueous methanol extracts of ground beans were analyzed in triplicate
by UV spectrophotometry. Analysis of variance—principal component analysis was used to quantify
the relative variance arising from location, variety, between rows of plants, and analytical uncertainty
and to test the significance of differences in the chemical composition. Statistically significant
differences were observed between all three locations, between all nine varieties, and between rows
for each variety. PCA score plots placed the nine varieties in four categories that corresponded with
known taxonomic groupings: (1) black beans (cv. Jaguar and cv. T-39), (2) pinto beans (cv. Buster
and cv. Othello), (3) small red beans (cv. Merlot), and (4) great northern (cv. Matterhorn and cv.
Weihing) and navy (cv. Seahawk and cv. Vista) beans. The relative plant-to-plant variance,
estimated from the between row variance, was 71—79% for 25—40 plants per row.
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INTRODUCTION

The chemical composition of dry beans is determined by
genetic, environmental, and processing factors. Some genetic
factors are obvious to the consumer; pinto beans are readily
distinguished from navy beans and black beans. However, the
influence of the growing location, seasonal variation (e.g., rain-
fall, temperature, and total sun exposure), cultivation practices
(organic vs conventional farming), and variation between plants
can only be determined through a statistical analysis of their
chemical compositions.

For nutritional purposes, the nutrient levels and variation are
of primary importance. Regretfully, analysis of all of the specific
vitamins and minerals can be prohibitively expensive and time-
consuming, especially when large degrees of variation are experi-
enced between plants, growing locations, and environmental
conditions. Analysis of all of the specific vitamins and trace
metals, however, would be time-consuming and costly. Analysis
of non-nutrient but bioactive chemical components would further
contribute to the cost of characterizing plant materials. A simpler
approach is to compare the overall chemical composition of plant
materials using spectral fingerprinting or chromatographic pro-
filing. Thus, a single well-characterized plant material can be
rapidly compared to new plants from the latest genetic cross,
cultivation practice, or processing method.

Spectral fingerprinting is based on direct analysis (no
separation) of a sample extract using ultraviolet (UV) and visible
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(vis) absorption, mass (MS), or nuclear magnetic resonance
(NMR) spectrometry or analysis of the solid material using
infrared (IR) or near-infrared (NIR) spectrometry (/ —7). Chro-
matographic profiling employs a separation of the plant extract
(or volatile components) by gas (GC) or liquid chromatography
(LC) or gel or capillary electrophoresis (CE) with, most com-
monly, UV, fluorescence (F), or MS detection (/—7). In both
cases, the comprehensiveness of the comparison is dependent on
the extraction solvent and procedure that is used. In both cases,
an integrated analysis of the chemical composition of the samples
requires the use of pattern recognition programs.

Spectral fingerprints, regardless of the means of acquisition,
are highly complex, representing the sum of the spectra of each
compound present in a sample. In general, it is very difficult to
identify, let alone quantify, individual compounds. While identi-
fication is sometimes attempted with MS fingerprints, the results
are unreliable and chromatographic separation is required to
obtain accurate results.

Principal components analysis (PCA) is the most commonly
used pattern recognition program for unstructured analysis (8).
Recently, Harrington et al. (9, 10) reported on the use of analysis
of variance (ANOVA)-PCA as a means of isolating experimental
factors prior to PCA. This method constructs submatrices of the
data for each factor that can be more easily interpreted, visually
and statistically, by PCA. Harnly’s group (/1, 12) reported a
variation of ANOVA-PCA that uses the submatrices to compute
the relative variance contributed by each factor.

Recent studies have compared the use of UV, vis, and MS
spectra of aqueous methanol (60% MeOH and 40% H,0)
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extracts and IR and NIR spectra of solid powders for identify-
ing chemical patterns in broccoli using ANOVA-PCA (11-13).
Composite samples of cultivar (cv.) Legacy grown with four
levels of selenium (Se) fertilization and of cv. Majestic grown
organically and conventionally, the latter with full irrigation
and 80% irrigation (based on transpiration rates), were ana-
lyzed. Results for IR, positive ionization (PI), and negative
ionization (NI) MS, NIR, and UV showed that between 20 and
40% of the sample variance was due to variety, 50—70% was
due to sample treatment (fertilization/irrigation), and 2—15%
was due to analytical uncertainty. The only major difference in
this pattern was observed using vis spectrometry, which
showed 70% of the variance coming from the varieties, 28%
from the sample treatment, and 2.2% from analytical uncer-
tainty.

Considering the different physical properties and, hence, the
different compounds measured by the different methods, the
extent of the agreement of results for IR, NI-MS, PI-MS, NIR,
and UV is remarkable. These data suggest that the treatments
affected the entire semipolar metabolome (obtained with an
aqueous methanol extraction) of the plant. Spectrophotometry
in the visible region is less informative since far fewer compounds
of the semipolar metabolome have chromophores in this region.
Far fewer compounds absorb in the visible portion of the
molecular spectrum than in the ultraviolet region. The MS data
revealed that differentiation between varieties and treatments was
primarily due to differences in the concentration of amino acids,
organic acids, and saccharides. The results of these studies point
out the need for more research regarding sources of variance in
plants.

A recent analytical study characterized the phenolic content of
17 varieties of dry beans (/4) using a standardized method based
on liquid chromatography coupled to a diode array detector and
a mass spectrometer (LC-DAD-MS) with positive and negative
ionization and low and high (for in-source collision induced
dissociation) fragmentation voltages (15). Although the beans
contained the same hydroxycinnamic acids, the flavonoid com-
ponents showed distinctive differences. The data suggested that
the dry beans could be divided into six categories: (1) black beans,
(2) pinto beans, (3) light red kidney beans, (4) pink and dark red
kidney beans, (5) small red beans, and (6) alubia, cranberry, great
northern, and navy beans.

Thompson et al. (/5) reported that dry beans in the diet
reduced the incidence of breast cancer. The risk factor was
dependent on market class (red and white kidney, great northern,
small red, navy, and black beans) and growing site (South
America and Middle America). Total phenolics and flavonoid
contents were strongly associated with the seed coat color. The
authors reported the need for profiling beans using metabolomics
to identify secondary metabolites responsible for the reduced
cancer risk.

In the current study, the UV spectra of nine varieties of beans,
comprising four of the categories listed above, were collected and
analyzed by ANOVA-PCA. The beans represented a unique set
of samples: The nine varieties of beans were each grown in three
locations (Maryland, Michigan, and Nebraska), and composite
samples were collected for each of the eight rows of each variety at
each location. Each sample was prepared and analyzed in
triplicate. This paper reports the variance arising from location,
variety, plant-to-plant variation, and analytical uncertainty for
this group of beans.

MATERIALS AND METHODS

Plant Materials. Nine varieties of beans (Buster, Jaguar, Matterhorn,
Othello, Merlot, Seahawk, T-39, Vista, and Weihing) were grown in three
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Figure 1. Overview of ANOVA preprocessing.

locations (Maryland, Michigan, and Nebraska) (/4). Eight rows of each
bean variety were grown in each state with 25—40 plants per row.
Composite samples from each row were collected and sent to the lab.
The three locations, nine varieties, and eight rows produced a total of 216
samples. Each sample was extracted and analyzed in triplicate.

Chemicals. High-performance liquid chromatography (HPLC)-grade
MeOH was purchased from Fisher Chemicals (Fair Lawn, NJ). HPLC-
grade acetone was purchased from Burdick & Jackson (Muskegon, MI).
Deionized water (18.2 MQ cm) was obtained in-house using a Nanopure
diamond analytical ultrapure water purification system (model D11901,
Branstead Internationals, Dubuque, IA). Polyvinylidene difluoride
(PVDF) syringe filters with a pore size of 0.45 um were procured from
National Scientific Co. (Duluth, GA).

Extractions. The extraction process was described in detail pre-
viously (/1, 12, 16). Briefly, 1 g of weighed freeze-dried and powdered
bean samples was extracted three times with 5, 2.5, and 2.5 mL of MeOH:
H,0 (60:40, % v/v). The supernates were combined and brought to a final
volume of 10 mL with MeOH:H,O (60:40, % v/v). All extracts were stored
in 2 mL HPLC vials under nitrogen at —70 °C until analyzed. Prior to
analysis, extracts were filtered and diluted by a factor of 50 into MeOH:
H,0 (60:40, % v/v).

UV Instrumentation. UV spectral fingerprints of the bean extracts
were acquired as previously described (/7). All data were recorded on a
Lambda 25 spectrophotometer (Perkin-Elmer, Boston, MA). UV finger-
prints were acquired at 1 nm intervals for the region 200—400 nm. The
extracts were diluted by a factor of 50 due to the strong absorbance in this
region.

Data Analysis. All spectral data were exported from the UV spectro-
photometer to Excel (Microsoft, Inc., Belleview, WA) for preprocessing.
PCA was performed using Pirouette 3.1 (Infometrix, Inc., Bothell, WA)
and Solo (eigenvector, Wenatchee, WA).

Individual profiles were combined to produce a two-dimensional
(sample x wavelength) input data matrix (M1 in Figure 1) for ANOVA
preprocessing. The data were first transformed to the first derivative using
Savitsky—Golay functions (M2). The ANOVA preprocessing, which is
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Table 1. Flavonoids and Phenolic Acids Found in Beans?
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peak nos.?

flavonols

anthocyanins

hydroxycinnamic

anthcyndns acids/acid derivatives

market

category®  class variety 1234567 89101112 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41

1 black Jaguar E EEEEE EEE EEE EEEE E EEE

T-39 E EEEEE EEE EEE EEEE E EEE

2 pinto Buster E EE E EEE EEEE E EEE

Othello E EE EEE EEEE E EEE

3 small red  Merlot E EE EH EEEEE HHEEE EEEE EHHHETETE

4 great Matterhorn EEE EEEE E EEE
northern

Weihing EEE EEEE E EEE

navy Seahawk EEE EEETE E EEE

Vista EEE EEEE E EEE

@Category and peak numbers refer to peaks in chromatograms presented in ref XX. E, found in estract; H, found in hydrolized estract; and NA, not analyzed in this study.

based on the method of Harrington et al. (9), has been described in detail
previously (/1, 12) and is shown in Figure 1. All data in the first derivative
matrix (M2) were squared (M3), and the sums for individual spectra were
used to create a unit vector matrix (M4). All data were then mean centered
for each measured variable to give the grand means matrix (M5) and
subtracted from the unit vector matrix to provide the grand residuals
matrix (M6 = M4 — M5). The squares of the grand means residuals were
used to compute the total variance. The grand means residuals (M6) were
used to compute the location means matrix (M7) and the location residuals
matrix (M8 = M6 — M7). The squares of the data in M7 and M8 were
used to compute the variance between and within the location, respectively.
In a similar manner, the location residuals (M8) were used to compute the
variety means (M9) and the variety residuals (M10 = M8 — M9). The
squares of M9 and M 10 were used to compute the variance between and
within the variety, respectively. The variety residuals (M10) were used to
compute the means (M11) and residuals (M12) matrices arising from
location—variety interaction (loc x var). Whereas the location and variety
means matrices each consisted of two sets of averages, the loc x var means
matrices consisted of four sets of averages. Squares of M11 and M 12 were
used to compute the variance between and within loc x var, respectively.
The loc x var residuals were used to compute the individual row means
(M13) and the row residuals (M14 = M12 — M13). The squares of M11
and M12 were used to compute the variance between and within the rows,
respectively.

The loc x var residuals matrix (M 12) represents the biological (genetic
and environmental) and analytical uncertainty. The row residual matrix
(M14) represents the analytical uncertainty arising from the three repeat
analyses of each sample. The biological and analytical uncertainty matrix
(M12) was added to the location means matrix (M7) and the variety means
matrix (M9) to generate the location and variety test matrices that were
submitted to PCA.

Statistical Calculations. The significance of the separation of two
populations was computed using Student’s 7 test. Student’s 7 value and the
combined standard deviation of the means were computed in the standard
manner (/7).

RESULTS AND DISCUSSION

ANOVA-PCA. Samples of 17 varieties of beans, representing
10 market classes, were previously analyzed using our standar-
dized profiling method for phenolic compounds (/4). The 17
varieties were divided into six categories based on visual inspec-
tion of the data. As shown in Table 1, the nine varieties grown in
the present study come from five market classes and fall into four
of the previously determined categories. In general, Table 1 shows
that the presence or absence of specific phenolic compounds is
correlated with the categories. Two of the market classes (great
northern and navy) form one category because of the similarity of
their phenolic content. The earlier data were not subjected to
pattern recognition analysis.

Using the ANOVA-PCA method described by Harrington
etal. (9), the data matrix consisting of the UV spectra for all of the
bean samples was used to establish a series of submatrices
(M6—M12 in Figure 1) that were used for PCA and computing
variance. Matrices subjected to PCA were obtained by adding the
“biological uncertainty” matrix (M12) to the location and variety
means matrices (M7 and M9, respectively).

Harnly’s group (/1, 12) showed that variance for each of the
experimental factors (Table 2) could be computed by summing
the squares of the individual data in each matrix (M6—M14 in
Figure 1). Thus, the total variance (M6) can be separated into the
variance between (M7) and within locations (M8). Similarly, the
within location variance (M8) can be separated into the variance
between (M9) and within (M10) variety. The within variety
variance (M10) can be broken down into between (M11) and
within (M 12) location—variety interaction (loc x var) variance.
The within loc x var variance can be separated into the variance
between (M13) and within (M14) rows. The within loc x var
variance (M12) and the within row variance (M14) are also
known as the biological and analytical uncertainty variance,
respectively.

The variance due to location—variety interaction is computed
prior to the variance between and within rows because location
and variety are regarded as fixed factors; that is, over time, their
effects would be expected to be nonrandom or predictable. Rows,
on the contrary, are random factors. There is no reason that, for a
specific cultivar, row 1 in Nebraska would correlate with row 1 in
Maryland.

Table 2 shows that 2.4% of the total variance arose from
location (M7), 71.2% from variety (M9), 11.0% from loc x var
(M11), and 15.4% from biological uncertainty (M12). The
biological uncertainty was attributed to 8.8% from row-to-row
variance and 6.6% from analytical uncertainty. Thus, the var-
iance due to variety exceeds the other sources of variance. Figure 2
shows a plot of the variance between locations, between variety,
and from biological uncertainty. Because of the greater variance
due to variety, variance from location and biological uncertainty
has been multiplied by a factor of 10 to make all of the plots
equally visible.

The data in Table 2 can be expressed as a classic two-way
crossed ANOVA with eight samples in each category
(Table 3) (17—19) since all nine varieties were grown at all three
locations and a composite sample was taken from each of the
eight rows of plants. Location and variety are fixed factors, and
row is a random factor (8, 19). The high significance of the loc x
var F value shows that there is a low probability that the variety
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Table 2. Variance from ANOVA Preprocessing (Figure 1)

Harnly et al.
Table 3. Crossed ANOVA

source of variance location variety loc x var row % variance

total (M6) 11.935 100.0

between location (M7) 0.292 24

within location (M8) 11.643

between variety (M9) 8.495 71.2

within variety (M10) 3.148

between (location x 1.314 11.0
variety)(M11)

within (location x variety) 1.834 15.4
(M12) (biological uncertainty)

between row (M13) 1.049 (8.8)

within row (M14) 0.784 (6.6)

(analytical uncertainty)

sum of mean

source DF  squares  square  Fvalue P
between 2 0.292 0.146 15.0 <0.0001
location
between 8 8.49 1.06 109.0 <0.0001
varietiy
between 16 1.31 0.082 8.45  <0.0001

(location x variety)
within (location x variety) 189 1.834 0.0097
(biological uncertainty

04

0.3 4 h

0.2 -

Variance

300 320 340 360 380 404

Wavelength

Figure 2. Variance as a function of wavelength for location x 10 (solid
black), variety x 1 (dashed black), and biological uncertainty x 10 (solid

gray).

means are consistent relative to one another at all three locations.
Thus, some of the variety means differ statistically among the
three locations, that is, the relative means of the nine varieties are
location-dependent.

Location Variance. The previous section showed that the
variance due to location was 2.4% of the total variance
(Table 2) and that there was <0.0001 probability that the means
were the same (Table 3). Figure 3 shows plots of the PCA scores
obtained using the location test matrix (M7 + M 12) for Michigan
vs Nebraska (M1 vs NE) and for Maryland vs Nebraska (MD vs
NE). The plot of Maryland and Michigan (MD vs MI) (not
shown) was similar to MD vs NE (Figure 3B). Each score plot is
composed of 216 samples from each state representing all nine
varieties, eight subsamples, and triplicate analyses.

Table 4 presents the means and standard deviations for the
horizontal distribution of the data for each of the PCA plots in
Figure 3 (MI vs NE and MD vs NE) and for the plot not shown
(MD vs MI). Visual inspection of the plots in Figure 3 suggests
that location had little effect on the chemical composition of the
beans. However, as shown in Table 4, the combined standard
deviations of the means are dramatically reduced as a result of the
large number of sample and the ¢ values are statistically signifi-
cant. The probabilities of the means being were <0.0001. These
probabilities are consistent with those from the two-way ANOVA
in Table 3. Both the two-way ANOVA (Table 3) and the
ANOVA-PCA (Table 4) display the same relationship, although,
in the latter case, the data have been transformed by PCA. In both
cases, the biological uncertainty is the limiting variance for the F
values (Table 3) and ¢ values (Table 4).
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Figure 3. PCA score plots from location test matrix (M7 + M12) compar-
ing beans from three locations: (A) Michigan (O) and Nebraska (M) and
(B) Maryland (O0) and Nebraska (M). Large crossed symbols show the
center of mass.

Table 4. Statistical Significance of Distance between Location Means
(Figure 3)?

MD vs Mi MD vs NE Ml vs NE
no. of data points 432 432 432
distance between means 2.56 1.92 4.70
standard deviation of the mean 0.72 0.72 0.69
Student’s t value 3.55 2.65 6.84
probability <0.0001 <0.0001 <0.0001
(Xave,t — Xave2)/0ing (223—397 nm) 0.24 0.18 0.46
(Xave,1 — Xave,2)/0ing (315—328 nm) 0.37 0.39 0.80

#MD, Maryland; M, Michigan; and NE, Nebraska.

The large overlap of the data clusters in Figure 3 indicates that
it would be difficult to develop a statistical model to predict the
origin of individual samples. Complete separation of the clusters
would be necessary to ensure accurate prediction. Consequently,
computation of a ¢ value based on the individual standard
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Figure 4. PCA scores of the variety means matrix (M9) comparing the
nine bean varieties in four groupings: black beans (Jaguar and T-39) (),
pinto beans (Buster and Othello) (M), small red beans (Merlot) (#),
and navy and great northemn beans (Matterhorn, Seahawk, Vista, and
Weihing) ().

deviation, X,ye. 1~ Xave 2)/Oind, Would be more predictive (Table 4).
An alternate approach is to select a smaller wavelength range
where the variance from location is greater as compared to the
biological uncertainty. In Figure 2, the two variances are approxi-
mately the same between 315 and 328 nm. Use of this region for
ANOVA-PCA provided improved (by a factor of 2), but not
complete, separation as shown in Table 4.

From a consumer’s point of view, a very large number of
servings of beans from a specific location would have to be eaten
before an individual would be exposed to a significantly different
chemical intake. The possibility of this occurring would be low
since the beans available in grocery stores come from a wide
variety of locations that are not identified to the consumer. In
addition, it is not known if the chemical difference of the plants,
arising from different weather conditions and soil chemistry of
the different location, between locations would have biological
significance.

Variety Variance. Table 2 shows that 71% of the total variance
was due to variety, and Table 3 shows that the probability was
<0.0001 that the means were the same. The data in Table 1
suggest that the nine varieties should fall into four categories.
Figure 4 presents the score plot obtained from PCA of the
varieties means matrix (M9). Because the analytical uncertainty
is omitted, each variety shows up as a single point. Figure 4 shows
that the nine bean varieties fell into four clusters that corre-
sponded to the four categories that were previously identified (/).
These data confirm that the color differences of the beans
correspond to chemical differences besides the chromaphores.
The four groups are composed of the black beans (cv. Jaguar and
cv. T-39), pinto beans (cv. Buster and cv. Othello), small red
beans (cv. Merlot), and white beans. The latter composed of the
larger great northern beans (cv. Matterhorn and cv. Weihing) and
the smaller navy beans (cv. Seahawk and cv. Vista).

A comparison of three of the bean varieties is shown in the
PCA score plots in Figure 5. In Figure 5A, cv. Jaguar is compared
to cv. T-39, a comparison within the same category, and in
Figure 5B, cv. Jaguar is compared to cv. Merlot, a comparison
between categories. Each comparison is based on 72 samples
(eight rows of each variety from three locations analyzed in
triplicate). The ¢ values for the two comparisons are 3.7 and
41.7, respectively, and the probability that the means are equal is
<0.0001 in both cases. This is visually obvious in Figure 5B and
less intuitive in Figure SA. These probabilities are consistent with
those from the nested two-way ANOVA in Table 3.

A comparison of all nine varieties at each location (data not
shown) yielded ¢ values that showed a probability of <0.0001
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Figure 5. PCA scores of the variety means test matrix (M9 + M12)
comparing pairs of bean varieties within groupings (A) black beans cv.
Jaguar (M) and cv. T-39 (OJ) and between groupings (B) black beans cv.
Jaguar (M) and small red beans cv. Merlot (C0). Large crossed symbols
show the center of mass.

that the means are the same. In general, the ¢ values for
comparisons within a category were less than those for compar-
isons between categories. The score plots in Figure 5 represent
the two extremes; the ¢ value for cv. Jaguar and cv. T-39 were
the smallest and the ¢ value for cv. Jaguar and cv. Merlot were
the largest for all variety comparisons in all three locations. All
other comparisons had ¢ values falling somewhere between these
two.

The comparisons of the mean values in the preceding
paragraphs were based on a ¢ test that employed the standard
deviation of the mean, that is, the combined standard devia-
tion of the individual clusters divided by the square root of the
number of samples. Consequently, the means of highly over-
lapping clusters (Figure 5A) can be statistically different.
However, it is intuitive that the possibility of establishing a
model to predict the variety of individual samples would be
far more likely for Jaguar and T-39 than for Jaguar and
Merlot (Figure 5A). A more accurate predictor for successful
modeling is visual confirmation that the clusters are separated
or a t value based on the individual standard deviation. In the
latter case, the revised ¢ values ranged from 0.5 to 7.7. In
general, it would be possible to distinguish between individual
samples from different groupings but not within groupings
(Figure 4).

Plant-to-Plant Variance. Table 2 shows that approximately
15% of the total variance came from the variation between rows,
while Table 3 shows that the probability is <0.0001 that the row
means are the same. The score plots for the comparisons of
individual rows showed six points (each row sample extracted
and analyzed in triplicate) with varying degrees of overlap (data
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Table 5. Plant-to-Plant Variance
original data

25 plants/row 40 plants/row

source of variance  variance % total variance % total variance % total

between location 0.29 2.4 0.29 0.8 0.29 0.6

between variety 8.50 712 8.50 229 8.50 16.1

between location x 1.31 11.0 1.31 3.5 1.31 25
variety

between row 1.05 8.8

between plant 26.2° 707 42.0° 79.4

analytical 0.78 6.6 0.78 21 0.78 1.5
uncertainty

total 11.9% 100.0  37.1¢ 100.0 5297 100.0

2Sum of variances. 21.05 x 25. ©1.05 x 40.

not shown). An example is the comparison of all 28 possible
combinations of the rows of Merlot in Nebraska. The ¢ values
ranged from 0.25 to 10.02, a typical range for all the samples. Of
the 28 ¢ values, 13 were statistically significant at the 95%
confidence level, 12 were significant at the 80% level, and three
were significant at the 50% level.

Plant-to-plant variance is much more interesting than row-
to-row variance. In this study, the beans from each row are a
composite of 25—40 plants. The plant-to-plant variance
should therefore be 25—40 times greater than the row-to-
row variance, since the variance of the mean is equal to the
individual variance divided by n, the number of samples.
Calculation of the plant-to-plant variance is presented in
Table 5 based on the original experimental data in Table 3.
For 25 plants per row, the plant-to-plant variance is 26.2
(=25 x 1.05). The total variance was then determined as the
sum of all of the variances. Thus, for 25 and 40 plants per row,
the relative variance between plants was 71 and 79%, respec-
tively.

This rough approximation suggests that for an individual
plant, the plant-to-plant variance is at least seven times greater
than that due to variety. Eight, or more, plants must be compos-
ited before the variance due to variety becomes equal or domi-
nant. It should be remembered that the data in Table S are
expressed as the percentage of total variance. These values for
plant-to-plant variance cannot be equated to the relative variance
for individual components (i.e., OZ/Xavemge). As the old saying
goes, this would be comparing apples and oranges.

CONCLUSION

UV spectrophotometry, as evaluated here, is surprisingly
sensitive, allowing discrimination between beans with respect to
location, variety, and between plants based on their chemical
composition. These results are consistent with those previously
reported for broccoli. The detectable chemical differences suggest
that there may also be a difference in the nutritional quality.
Although bean varieties are readily discerned by visual inspec-
tion, the variance due to location and between plants can only be
determined experimentally. The variance contributed by each of
these experimental factors in, descending order, was between
plants > variety > location. The rapid method of comparison
reported here is considerably simpler and cheaper than full plant
nutrient profiles.
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